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1.   INTRODUCTION 
Though few would argue that quantum electrodynamics 
is an accurate description of nature, the semiclassical 
theory of field-atom interactions still holds an important 
place in modern physics. One need only consider the 
Bloch equations and their utility in quantum optics1,2 and 
magnetic resonance3 to appreciate the vitality of semi- 
classical electrodynamics. Notwithstanding this utility, 
a failing of traditional semiclassical electrodynamics4 has 
been its inability to predict accurately spontaneous emis- 
sion from first principles.5,6 There is nonetheless a feel- 
ing among many that semiclassical electrodynamics 
ought to be more successful in this regard;7 after all, QED 
indicates that vacuum fluctuations and radiation reaction 
are inextricably linked (and therefore that spontaneous 
decay can be interpreted as an effect driven by radiation 
reaction8) and radiation reaction is a feature of classical 
electrodynamics.9 

Beyond the issue of classical field theory's intrinsic ca- 
pabilities, there are pragmatic reasons for pursuing a 
semiclassical description of spontaneous emission. Typi- 
cally, spontaneous decay is incorporated into the semi- 
classical theories of quantum optics through an exponen- 
tial decay rate for atomic density matrix elements. 
However, there are processes such as quantum jumps1 

and radiative decay in photonic bandgaps11 for which this 
approach is inappropriate. Although valid and success- 
ful theoretical methods exist for describing these pro- 
cesses, their semiclassical interpretation might neverthe- 
less have utility. In this regard, the present work is 
meant as a step toward extending the reach of semiclas- 
sical methods to a broader class of radiative phenomena. 

To this end, it is worth noting that no matter how one 
interprets the cause of spontaneous decay in QED, the 
vacuum plays a significant role.12,13 Consequently, if a 
semiclassical theory is to be successful in describing this 
phenomenon, then vacuum fluctuations should somehow 
appear in the theory.14 Here the vacuum of QED is 
simulated with a classical zero-point field (ZPF),15 and 
the consequences of this ZPF in semiclassical electrody- 
namics are explored. For clarity, the resulting theory is 
titled semiclassical random electrodynamics (SRED). I 
wish to state explicitly that I make no claims for SRED as 
a rival to QED; the present experimental situation pro- 
vides no imperative for such a rival. If anything, low-to- 
high-energy experiments argue forcefully for the validity 
of quantized fields. Rather, SRED should be viewed as a 
semiclassical approximation to QED, which may never- 
theless have computational advantages over QED with 
regard to the investigation of specific radiative problems. 
Additionally, SRED may prove useful as a touchstone for 
semiclassical approximations to quantum gravity.16 

In essence, SRED should be viewed as the semiclassical 
extension of what has come to be called stochastic electro- 
dynamics (SED).17 In SED, one often approaches radia- 
tive problems through the Braffort-Marshall equation, a 
generalization of the Abraham-Lorentz equation of clas- 
sical electrodynamics9 that includes the ZPF. The result- 
ant theory thereby contains a fluctuating vacuum field 
along with the atom's radiation-reaction field, and SED 

has been quite successful in accounting for various radia- 
tive processes, in particular, spontaneous emission and 
the Lamb shift.18 Alternatively, SRED is truly semiclas- 
sical in that the atom is described quantum mechanically 
in terms of its wave function, while the ZPF and the 
radiation-reaction fields are considered perturbations on 
the wave function's evolution. As a consequence, one of 
the main difficulties for SRED that differentiates it from 
SED concerns the identification of a radiation-reaction op- 
erator for inclusion in the Schrbdinger equation. 

In Section 2 of this paper a quantum-mechanical opera- 
tor for an atom's radiation-reaction field is constructed by 
use of classical electrodynamics and operator hermiticity 
as guides. Then, in Section 3, the ZPF is described along 
with its electric dipole interaction with an atomic system. 
In Section 4 the influence of the ZPF and the radiation- 
reaction field on atomic state evolution are explored up to 
second order in perturbation theory. One of the major 
problems with standard semiclassical electrodynamics 
has always been its inability to obtain spontaneous decay 
without spontaneous excitation of the ground state. The 
analysis of Section 4 shows that, for an excited atomic 
eigenstate \m), the average electric dipole interactions as- 
sociated with the ZPF and the radiation-reaction field add 
to produce exponential decay of |m), whereas they cancel 
to prevent spontaneous excitation of the ground state. 
The numerical value for the spontaneous decay rate ob- 
tained in SRED equals that of QED, and SRED predicts a 
radiative level shift for \m) in agreement with the nonrel- 
ativistic Lamb shift of QED. The paper concludes with 
Section 5, in which a numerical method for applying 
SRED to more-general problems of radiative decay is dis- 
cussed. 

2.   RADIATION REACTION 
Classically, when an electrical charge accelerates it emits 
a field that acts back on the charge. This field is called 
the radiation-reaction field, ERR, and in nonrelativistic, 
classical electrodynamics it is simply related to the rate at 
which the charge's acceleration is changing: 

2e 2 
(1) 

where ft is the electric dipole moment. As simple as this 
description seems, radiation reaction presents many 
thorny problems in classical electrodynamics.9 For ex- 
ample, in the Abraham-Lorentz derivation of Eq. (1) an 
electromagnetic mass enters the problem and becomes in- 
finite for a point particle such as the electron. Addition- 
ally, radiation reaction in classical electrodynamics can 
lead to preacceleration, that is, acceleration of a charged 
particle before the application of any force. Here we 
shall not consider such problems19 but rather, in the 
spirit of Series,7 use Eq. (1) as a guide in the construction 
of an atomic operator whose expectation value is reminis- 
cent of the classical radiation reaction field. 

As a first step in transforming Eq. (1) into such an op- 
erator, it should be recognized that both n and (?,3 need to 
take on atomic operator characteristics.   Inasmuch as it 



is already a quantum-mechanical operator, the task is to 
define an atomic operator to represent the temporal de- 
rivative. To this end, we take advantage of the Schrö- 
dinger equation for the unperturbed wave function and 
the relationship that it provides between a, and the un- 
perturbed Hamiltonian. There is, however, some ambi- 
guity in this relationship, as we can replace ii, with the 
Hamiltonian as it appears in the Schrbdinger equation for 
the atomic wavefunction or with the Hamiltonian as it ap- 
pears in the Schrbdinger equation for the conjugate 
atomic wave function: 

Mr>,\tp) = H0\<p) => a, 

-ifia,{<p\ = (<P\H0 => a, 

t,  ' 

iHo 
ti   ' 

(2a) 

(2b) 

A proper description of spontaneous emission in SRED re- 
quires the latter replacement [i.e., Eq. (2b)] because the 
alternative choice leads to spontaneous excitation of the 
atomic ground state. Although it would lead us too far 
astray to speculate here on the implications of this choice, 
it is intriguing to recognize a possible connection to 
Wheeler's and Feynman's absorber theory,4,20 in which 
the seat of radiation reaction lies in fields that are trav- 
eling backward in time from distant absorbers. 

Taking Eq. (2b) as an operator equivalent for at and 
maintaining the classical ordering of at

3 and /*, one might 
attempt to define ERR as (-2i/3fi3c3)#0V Unfortu- 
nately, ERR is then not Hermitian. However, if this ex- 
pression for ERR is averaged with its Hermitian conju- 
gate, a Hermitian operator can be created. Thus we 
define the radiation-reaction field operator as 

ERR = 
3AV 

(HoV-^ffo3)- (3) 

For an atomic system described by the wave function 
\<p) the expectation value of ERR obtained from Eq. (3) is 

<<P|ERR|<P) = 
3ÄV ■2 [<»|H0

3l»><n|#«l<P> 

(V\rtn)(n\H0
3\<p)1, (4) 

where {\n)} are eigenstates of the unperturbed Hamil- 
tonian. If |<p> corresponds to one of those eigenstates, for 
example \m), then it is straightforward to show that 
(m|ERR|m) = 0. Thus atoms in eigenstates of the unper- 
turbed Hamiltonian do not emit a radiation-reaction field. 
Alternatively, if \<p) corresponds to a superposition of 
eigenstates that can be coupled by an electric dipole in- 
teraction, for example |<p) = (l/\'2)[|l)exp(-iw1i) 
±  |2)exp(-i<i)2<)]i then under the assumption that 

|<i>2ll ^   \'3ü)2ü,l 0>2  -   «>! (5a) 

(e.g., |1) is the ground state so that u>! = 0), the expecta- 
tion value for the radiation-reaction field becomes 

IAl2ll<J21 
(<f>|ERR|<p) = ±——3—sin(a>2i< + 0), (5b) 

dC 

where /t2i = I A4 21k'*. Tnis is essentially the classical 
expression for an oscillating dipole's radiation-reaction 
field, and it indicates that radiation-reaction fields arise 
when atoms are in superposition states of the unper- 
turbed Hamiltonian. Thus Eq. (3) can be taken as a rea- 
sonable quantum-mechanical operator for the radiation- 
reaction field. 

Although it is to be noted that Eq. (5b) is half of the 
magnitude of the classical value, it should also be recog- 
nized that ERR is not gauge invariant because of its de- 
pendence on H0. Thus the radiation-reaction field op- 
erator of Eq. (3) is simply a calculational tool, not a true 
physical quantity.21 Consequently, any rigorous com- 
parison between the present quantum-mechanical ver- 
sion of the radiation-reaction field and its classical analog 
must be treated cautiously.22 

For future reference we note that if VRR is defined as 
the perturbation of the atom that is due to a dipole cou- 
pling with its radiation-reaction field; then Eq. (3) yields 

Vm = -u ■ ERR = 
3äJC 

3  3 (ft ■ H0
3fl - M ■ fxH0

3). 

(6) 

3.   CLASSICAL ZERO-POINT FIELD 
As outlined by Boyer,23 Maxwell's equations are valid for 
a variety of boundary conditions. Standard classical 
electrodynamics arises when the boundary conditions are 
chosen such that the fields in vacuum are zero, and only 
retarded fields are allowed. Random electrodynamics 
arises when the choice of boundary conditions consists of 
random electromagnetic radiation with a Lorentz invari- 
ant spectrum (i.e., the classical ZPF), and again only re- 
tarded fields are considered. Whereas the "proper" 
choice for boundary conditions will often lead to debate, it 
should be noted that according to Boyer "a consistently 
classical treatment of thermal radiation leads to the natu- 
ral introduction of temperature-independent fluctuating 
radiation in the universe." 24 Here, questions regarding 
the value of various boundary conditions for classical elec- 
trodynamics will be ignored. We simply consider an 
atom enclosed in a large conducting box of length L, filled 
with a classical ZPF, as a reasonable approximation to an 
atom interacting with the vacuum of QED. The ZPF vec- 
tor potential Ao within the box can then be written as a 
modal expansion of random plane waves:15 

A« = L~3/2X *kx{ciu exp[i(k ■ r - m,t)] 
kx 

Ckx* exp[-j(k • r - wst)]}. (7) 

Here "ekx is a modal polarization vector, ckx is a random 
complex amplitude for the wave, kt = IriiirlL (n, 
=  0, ±1, ±2,...), and 



/2ir\2r 2l     (o>s\
2 or, equivalently, 

k ■ k = (ir) [n* + n> + nz] = \Tl '      (8) 

E0 s i'[(irfi)/L3]1/22 esxM^[2sx exp(-io.st) 
where the modal index s corresponds to the triplet of 
numbers {nx , ny , n2}.    Taking the derivative of Eq. (7) _ 2sX* exp(i>,i)]. Ü4b) 
and replacing the sum over wave vectors by a sum over ,.«.,,,. •     ^    t 
modest we get for the zero-point electric field Defining V° as the perturbation of the atom owing to its 

dipole coupling with the ZPF, we have 

Eo = -^== | ^{-.■».c.x exp[<(k, • r - «.*)] ^ = _^   ^ = .^^^s^ „ . ^ 

+  <*,csX* exp[-i(ks • r - „.«]}. (9) x   ^-^ ^.^ _ ^ ^.^^ 

The complex modal amplitudes can be written in terms . _. 
of a scale factor csX° and a mean-zero complex random 
variable zsk:    csX = csk°zsk.    Then, expressing zsX in Later we shall have need for Z{V°mn(t)} as well as for 
terms of two independent, unit-variance, real-valued ran- ?{\r°m n(t)V°pq(t')}, where V°„ is defined as (m\V°\n). 
dorn variables usK and vsX with mean zero such that Clearly, from the mean-zero characteristic of zsX , 

tf{«.xKr„} = ^Kx<^} = 4A„, we have ^{V°„(0} = 0.                            (16) 

,    = —(„    - ;„   i fiOa)     Computing the second-order correlation function for the 
\'2 perturbation yields 

?IW}=M„ <i°b)   '{vlc)v>')} 

«^„l^^VI-o. d°c) ^v  /—/ i    - i„\/„i„  ; I„N = -7ir2/ vwsü>r(m|M • fsX|«><PlM • er,*l<7) 
where Z{} indicates an ensemble average. L    sx 

To evaluate the scale factor one can use Eqs. (9) and rM 

(10) to show that X   ^{[zsX exp(-iust) - zsX* exp(iws<)] 

If ,,    ,        v   ("^x0)2        ,,„ X  [zr„exp(-ia.r(')-2r/exp(io)r/')]}. 
Ü.--J  *«>«*- 2   -^i".       (ID (17) 

r ,    ™T,        i. ti. * 4-u Multiplying out the terms in the ensemble average and 
Lorentz «variance of the ZPF spectrum requires that the emplo

P
y£/Eqs. (10) yields 

energy of each mode be proportional to o>s.       Conse- *"  J    a 

quently, the scale factor must be inversely proportional to £{V°mn(t)V°pq(t')} 
sfö)~s, and for agreement with the experimental results for 

.blackbody radiation the proportionality constant must be _ WÄ V  ^/TTTT/ml«    «   \n\tn\u-~e   \a)- 
related to Planck's constant h.    In this way it can be " J* % V«.»,<™l^    *.xl»><Pl#*    ^l<?> 

shown that r>1 

hu> x RA^ exp[-iü)„(< - <')] 
csx0 = [Mc W - "o - 2   "a-        (12) + ^ exp[.ws(i _ n]} (18) 

With the aid of Eqs. (10a) and (12), the electric field vector      or 
of the ZPF now becomes {IV0  (t)V° (t')} 

E0 = [(2rfVL']»S ^[».x -(ks • r - „.„ _  -* ^ ^^    . Jf|><|^    . J<?) 

- "•> Sin(ks • r - "•')]- U3) x {«rf-^.U -*')] + exp[i«.(* - *')]}•  (19) 
Note that this expression for the ZPF is equivalent to that 
recently discussed by Ibison and Haisch.25 

To explore the interaction of the ZPF with a quantum      4.   PERTURBATION THEORY 
system we consider an atom conveniently placed at the      A    Evoiutjon 0f the Wave Function 
origin of the coordinate system and make the dipole ap-      We nQW consi,jer the Schrödinger equation for an atom in 
proximation (i.e., for the modes of interest, ks ■ r <S 1).      tne presence 0f the ZPF and the radiation-reaction field, 
Then, in the vicinity of the atom, 

m M = [H0 + vm + W)lk>.        (20) 
dt E0 = [(2TTä)/L

3
]

1/2
2 ^V^[»S» C°S(wst) 

and expand the atom's wave function in terms of the un 
+ usX sin(ü)si)] (14a)      perturbed basis wave functions: 



If) = 2 an(t)\n)exp(-iü)J). (21) 

Then in standard fashion we obtain an equation for the 
expansion coefficients: 

«■«) = ~2 MVRnU) + (n\V0\j)]aj{t) exp(iconjt), 

(22) 

where ionj = m„ - ioj.    Integrating and defining an° as 
a„(0), we can also write Eq. (22) as 

an(t) = a„° - - 2   fW* + V°,.U')]a,(n 
n   j    Jo 

x exp(iüj„jt')dt'. (23) 

B.   Wave-Function Evolution Owing to Radiation 
Reaction 
Defining the first term on the right-hand side of Eq. (22) 

as an
RR(t), we have, after substituting from Eq. (6), 

X (ra|(/t ■ H0
3n - fi ■ fiH0

3)\j) exp(ia>„jt). 

(24) 

Note that the radiation-reaction field forces an orienta- 
tion onto the atom's dipole moment. Taking an ensemble 
average of Eq. (24) over the ZPF, and defining bn(t) as 
£{an(t)}, yields 

hnm(t) = —^ 2 bjit)[rnp(p\H0*\q)pgj 
Oil   C    pqj 

- ^np^pq(q\H0
3\j)]exp(iü)njt)        (25) 

or, when the Hamiltonian terms are evaluated, 

1 
b™(t) 

3hc- 
2 bj(t)finpfj.pj(a>p

3 - Co/) exp(io)„jt). 

(26) 

We now ignore the rapidly rotating terms in Eq. (26) [i.e., 
exp(ia)njt) —> Snj] and recognize that the sum in Eq. (26) 
will be dominated by those states \p) that best satisfy the 
validity condition for the radiation-reaction field operator, 
inequality (5a). Thus we approximate (wp

3 - o)„3) with 
o)pn

3 and obtain 

öflC n 
(27) 

C.   Wave-Function Evolution Owing To the Zero-Point 
Field 
We now define the second term on the right-hand side of 

Eq. (22) as an
ZPT(t): 

an
ZPF =--E Vlj(t)ajit) exp(iu>nJt),        (28) 

"   j 

and substituting from Eq. (23) yields 

am
ZVT(t) = 4 2 Knit) exp(i<omnt) 

h   j    Jo 

X  exp(i<i>njt')dt' (29) 

We can now ensemble average Eq. (29) over the ZPF, so 
that 

bm
ZPF(t) = "la 2 exp(ia,mJ) 

n     nj 

{'ir{V°mnWV%lt')}bj(t')exp{iw^f)6t'. 
Jo 

(30) 

In writing Eq. (30) we have taken advantage of the fact 
that causality requires aj(t') to be independent of V°mn(t) 
for t' < t, and we have assumed that the evolution of the 
ZPF is unrelated to the atom's dynamics. Thus we con- 
clude that aft') and V°„U) are independent of each 
other for t' < t. Moreover, inasmuch as the ZPF pertur- 
bation is weak in the limit of a large volume enclosure, to 
second order in perturbation theory we can make a deco- 
rrelation approximation between V0

nj(t') and aft') {i.e., 

the ZPF correlation time is much less than A[Vj^«')]-1}. 
In this way we obtain 

nV°mJt)V0
nj(t')aj(t')] s Z[V0

mn(t)V
0

nj(t')]Z[aj(f)] 

= '£[V"mn(tWlj(f)]bj(t').    (31) 

To second order in perturbation theory we approximate 
bj(t') with its value at t and substitute for the correlation 
function from Eq. (19).   Equation (30) then becomes 

bm
ZPF(t) = -—j 2 bj(t) exp(ia,mnt) 

TlL      nj 

2 <"S(™IM • esX\n)(n\/x ■ esX\j) 
Jo\s\ 

x {exp[-iws(< - t')] + exp[i<os(t - <')]} 

x  exp(iwnjt')dt', (32) 

As we discussed above, the dipole moment of the atom 
is aligned along the direction of the radiation-reaction 
field. We define this orientation as the z axis of the co- 
ordinate system26: 

ZJ  
es\,z£s\,z —  1 |*f (33) 

so Eq. (32) becomes 



L  zPF(t) = _ Y bAt) exp(ia>mnt)tJ.mnHnj 
m       K   ' ÜL3   nj 

Jo\  s 
sin2(0s){exp[-ieos« - t')] 

+  exV[i<os(t - <')]}] exp(iü>n/')df,   (34) 

where 0S is the polar angle between the wave vector for 
the sth mode and the z axis as denned by the radiation- 
reaction field. If we now allow the volume of the box en- 
closing the atom to go to infinity, 

Int(l) = lim       ü>3 exp{-iwt) 
a-o Jo 

X     'exp[a<' + i{a> + (onj)t']dt'dio, (39) 
Jo 

which on integration with respect to the temporal vari- 

able yields 

/ [' m3doi 
Int(l) = lim(exp{[(a + i<onj)t]}j^ -^rj 

a-0\ 

w3 exp(-ih)t)dco 

(w + <onJ) 

(40) 

Eq. (34) becomes 

i   ZPF,n _  2. bj(t) exv(i<omnt)(imnHnj 

{exp[-io>(t - t')] 

+ exp[ia>(f - t')]} sin3(0)d0d<£dttij 

x  exp(iwnjt')dt'. (36) 

Integrating over 6 and <j> then yields 

bJP¥(t) 

J0   a + i(u) + b)nj) 

Note that both integrals will be dominated by large w. 
However, in the second integral these terms oscillate rap- 
idly and quickly average to zero.   Thus 

(41) 

Int(l) = lim(exp{[(a + iu>nJ)t]} 

üi3[a - i(ft) + ü)nj)]äiü f» ft>°[a 

Jo        a + (o> + ft>„/ 

As discussed by Heitler,27 the limit of the real term yields 
a Dirac delta function, whereas that of the imaginary 
term can be expressed in terms of a principal value: 

Int(l) = exp(ifti„/) v     w3S(w + ft>n,-)da> 

 ä 2 bj(t) exp(iü>m„t)fj.mnfi.„j 
TTUC      nj 

['[[  a>3{exp[-i<o(t - t')] 

i:? r Jo 

3do> 
(42) 

+  exp[ia>(t - t')]}da>j exp(ia>ajt')dt' 

or, when we rearrange the orders of integration, 

1 

(37) 

(ft) + «)„;) 

In a similar fashion the second integral is evaluated and 

yields 

Int(2) = exp(ia>„;0 IT      O
3
ö(W - <onj)d.a> 

f"     ü)3dft) 
+ i'jft f Jo 

LZPF(t) = - Zirhc3  „j 
2 bj(t) exp(i<omnt)tJ.mntinj 

a)3  exp(-iwt)      exp[i(tt) + wnJ)t']dt' 
Jo Jo 

(ft)  -   <tinj)\' 

Combining Eqs. (42) and (43) in Eq. (38b), we get 

1    „ 
6m

ZPF(0 = -—-j 2J 
bj(t) exp(icomjt)limnfj.nj 

(43) 

+ exp(ift)«)      exp[-i(ft) - a>nJ)t']dt'  d&> If" Jo 

3[<5(o> + o)nj) + 6(a> - o>nj)]du) 

(38a) I'A, (44) 

bm
ZP?(t) = --—j 2 bj(t) 

X  exp(icümnt)MmnMnj[Int(l) + Int(2)]. 

(38b) 

To proceed, we now evaluate the integrals in Eqs. (38) 
separately. Considering the first integral, we write this 

as 

where the imaginary term is defined as 

1 

3irfic3  „j    J 
]£ bj(t) exp(immjt)ixmntinj 

0 \ft) -  <>)„; ft) + <<)„ 
du (45) 



and leads to a radiative level shift induced by the ZPF. 
Recognizing that the rapidly oscillating terms in Eqs. 

(44) and (45) quickly average to zero, we have 

bm     {t) 3ftc3 ~ 
\ß, 

Jo 
ü) + o>„m)do> 

I, +        ü>
3
S(ü> - o>„m)da>   - ibm(t)A',    (46a) 

where 

A' = ■ 2   >»nm\Pmn\2-S' 
n JO 

ü)3dü 

3irhc 
(46b) 

Note that in Eq. (46a) the integrals are only over positive 
values of oi. Thus, depending on the energetic relation- 
ship between \n) and \m), the delta functions will cause 
only one of the two integrals to be nonzero.   Thus 

ZPF, '(*) 2   l^mnl 
bm(t) 

~3ilC3     n 

- ibm(t)A\ 

<»m >  0>Tl 

W„      >      0)„; 

(47) 

D.   Spontaneous Decay 
Combining Eqs. (47) and (27), and ignoring the radiative 
level shift term for the moment as this has no influence on 
decay, we find for the evolution of the eigenfunction coef- 
ficients that 

bjt) 
bm(0 = -17TJ She* 

+ w„ 

X    2   \ßmn\2\   °>™ 
0>„   >   O) n "   wmJ 

(48a) 

bm(t) = - 
2bm(t) 

dflC       n<m 
S    \Hmn\2»n.n*- <48b> 

Defining Pm as the probability for finding the atom in 
the excited state \m) (i.e., |6J2), we obtain an exponential 
decay equation for this probability: 

En 
dt 

where 

rm = 2    Ißmn^Umn3- 

(49a) 

(49) 

This, of course, is just the Einstein A coefficient for the 
spontaneous decay rate of \m). Note that if we define |1> 
as the atomic ground state, then I"i is identically zero be- 
cause there are no states of lower energy. Essentially, in 
SRED excited states decay exponentially because the ra- 
diation reaction and vacuum pathways add construc- 

tively. Spontaneous excitation of the ground state does 
not occur, because in that case these two pathways would 
interfere destructively. Although many authors have 
recognized this interference between radiation reaction 
and the vacuum in QED, here we find it again in the con- 
text of a semiclassical description of spontaneous decay. 

E.   Lamb Shift 
Returning now to the radiative level shift described by 
Eq. (46b), we note that the integral is strongly influenced 
by the very high-frequency ZPF modes: 

A' = 
Snhc- 

2J   <»nm\V-mn\2 

n JO 
coda) = AQ. (50) 

Employing the Thomas-Reiche-Kuhn sum rule28 and re- 
membering that \fimn\ = e\zmn\, we can rewrite relation 
(50) as 2 

ÄAo =    —e—^\      "da.. (51) 
\3irmc3jJo 

This, however, is just the average value of the interaction 
energy between a free electron and the z component of the 
ZPF, as can easily be shown from Eqs. (7) and (33) and 
expression (35): 

ftA0 = 
2mc' 

(|A0|2>2 (52) 

Because this energy is the same for all levels, it does 
not give rise to an observable shift and so should be sub- 
tracted from the shift of Eq. (46b). Of course this sub- 
traction is just the well-known mass renormalization of 
QED.12'29 

The observable radiative level shift in SRED is thus 

2        .     Cxl      o)dai 

Zirhc     n Jo 0   \0) 
(53) 

and, when the integral is evaluated with a high-frequency 
cutoff of mc2lh, the result is the standard Lamb-shift for- 
mula of nonrelativistic QED: 

A = 
2      „ I      mc 

2J   «VmVmnl2 ln 

37Tftc3     „ \E. E„ 
(54) 

In SRED, as can be argued in QED,12 the Lamb shift is 
seen as an ac Stark shift of an atomic-energy level in- 
duced by the ZPF.30 

5.   NUMERICAL SIMULATION OF 
SPONTANEOUS DECAY 
One of the attractive features of SRED with regard to 
computation concerns the representation of the vacuum 
as an easily simulated classical ZPF. A potential utility 
of SRED may therefore reside in the numerical simula- 
tion of spontaneous decay in an arbitrary vacuum (e.g., a 
cavity).31 Unfortunately, the description of spontaneous 
decay in SRED as formulated above requires an expres- 



sion for radiation reaction, and in an arbitrary vacuum it 
may be difficult to arrive at a workable operator represen- 
tation of radiation reaction for inclusion in the Schrö- 
dinger equation. To circumvent this problem, in this sec- 
tion we appeal to the fluctuation-dissipation theorem in 
order to remove the explicit reference to radiation- 
reaction from the equations that describe a wave func- 
tion's evolution. As will be shown below, for the vacuum 
of free space the procedure provides an accurate numeri- 
cal simulation of the sodium 32P1/2 state's radiative de- 

cay. 
For simplicity we consider the case of a two-level atom, 

where £j = 0 and E2 = tiOJ21, and we take advantage of 
the wave function's normalization to write \ax\2 = 1 
- |a2|2. Thus with regard to spontaneous decay we 
need only consider a second-order perturbation solution to 

a2 = a2
RR + a2

ZPF. (55) 

As the previous analysis demonstrates, if Eq. (55) were to 
be averaged over the vacuum field then each term on the 
right-hand-side would contribute equally to the decay of 
a2; that is, 

Re(a2
RR) = Re(a2

ZPF> = ~{a2{t)). 
A 

~4 
(56) 

As many authors have stated, this equality is to be inter- 
preted as a manifestation of the fluctuation-dissipation 
theorem;32 that is, the wave function's evolution as a re- 
sult of radiation reaction corresponds to the atom's dissi- 
pative response to the random fluctuating force of the 
vacuum field. Physically, then, Eq. (56) would suggest 
that radiation reaction can be eliminated from perturba- 
tion theory by the replacement of terms that correspond 
to radiation reaction with terms that correspond to the 
vacuum field, so long as there is a proper accounting of 
each term's relative sign. Following this procedure for 

Eq. (55), we obtain a2 = 2a2
ZPF or, using Eq. (29), 

a2(i) ■ fi2iet • E„(f) exp(i<o21t) 

Jo 
Eo«') VR

2
R] 

X a2(t') exp(-icü21t')dt' (57) 

As our interest is in the atom's spontaneous decay, we 
can perform a coarse-grain averaging of Eq. (57) over a 
time scale r that is long compared with the correlation 
time of the vacuum field but short compared with the 
wave function's evolution.   Then, with 

1   f1+T/ 

7  Jt-r/2 

Eq. (57) becomes 

Y(t')dt', (58) 

a2(t) 
2|M2ll' 

/: 
(exp(ioi2lt)ez ■ E0(t)e2 ■ E„(i') 

Substituting for e2 ■ E0«) from Eq. (15), defining Ss as 
(os - <o21, and ignoring the rapidly rotating terms of ais 

+  <o21, we obtain 

a2(t) = — 
2W|AI2I|

: 

hL6 2 
S\,pT] 

2s\2p,*\/wsWp(esX,2ep,,_,) 

Jo 
(exp(-iSst) exp(iSt'))Ta2(t')dt' (60) 

Because of the independent nature of the zsX, as the 
vacuum field mode spacing Aa> decreases we expect that 

lim zs>J2 z   * = \zJ2SspSK„. (61) 

Thus the sum over vacuum field modes in Eq. (60) can be 
approximated with 

2T|M2II
2
 . 

aM) £ — 
hL3 

(exp[- 
Jo 

FsJ   <»s(«»\.*e«X.j) 

■iS,(t - t')])Ta2(t')dt' (62) 

Making the second-order perturbation theory replace- 
ment of a2(t') with a2(t) on the right-hand side of rela- 
tion (62) and evaluating the integral then yield 

2'"V2i|2 ^, 
a2(<) = „j     a2(t)Zi 

s\ hL3 iSs 
(es\,zesX,z' 

x  [1 - exp(-i<5sO] (63) 

For the purposes of computational convenience we now 
set |zsi|

2 = |zs2|2, recognizing that doing so should have 
little effect on a numerical simulation of spontaneous de- 
cay so long as the number of modes used in the computa- 
tion is large. The sum of polarization terms in Eq. (63) 
can now be easily handled as in Eq. (33) and then aver- 
aged over 4TT steradians, so that 

4ir\fi21\2 ,_, 
a2(t) = ojr3    a2(t)2j ZhL6 iS, 

[1 - exp(-£<5sO] 

(64) 

We can further simplify Eq. (64) by recognizing that the 
volume of the vacuum under consideration, L3, is propor- 
tional to the vacuum field mode spacing (i.e., L3 

=  27r2c3/w2Aw),33sothat 

a2(t) = - 
2|/u2i|2«>2i

2Aw 

37TÄC3 

iS, 

■ a2(t)\\z0\ w21t 

[1 - exP(-iSst)] (65) 

where the prime on the summation indicates that the Ss 

=  0 term has been removed. 
Finally, integrating Eq. (65) yields 

x  exp(-iw2lt'))Ta2(t')dt'. (59) 



In 
a2(t) 

a2(0) 

a>2it 
\*oV + 2' [i 

cos( S„t)] + [sin(Sst) - Sst] 

where 

2|/z21|
2&>2i

2Aa> 

3irhc3        ' 

(66) 

(67) 

Again, with P2U) denned as the probability of finding the 
atom in the excited state, Eq. (66) results in 

P2(t) = P2{0)expl-K\z0\2w21t
2 - 2K]£'    W2(jl 

X [1 - cos(<5,<)] (68) 

To test the validity of this semiclassical procedure for 
numerically simulating spontaneous emission we can ap- 
ply Eq. (68) to the decay of sodium's first excited state at 
589.6 nm (i.e., 32P1/2 - 3 2Sm)- The 32Pi,2 state life- 
time is 17.0 ns,34 yielding an electric dipole moment for 
this transition of 2.07 X 10"29 C m.35 Figure 1 shows 
P2(0 computed from Eq. (68) for three values of the mode 
spacing (i.e, 100, 10, and 1 kHz).36 The range of modes 
employed in the summation of Eq. (68) was limited to ±10 
GHz, which corresponds to a correlation time for the 
simulated vacuum field of -0.01 ns. Clearly, as the 
mode spacing approaches zero the decay of P2U) becomes 
exponential to high precision, and the numerically simu- 
lated rate of decay corresponds to a 17-ns lifetime. 

6.   SUMMARY 
The Einstein A coefficient for spontaneous decay has been 
derived by use of second-order perturbation theory in a 
completely semiclassical formalism with (1) the assump- 
tion of a classical ZPF and (2) a Hermitian operator for 
the atom's radiation-reaction field. Additionally, the 
semiclassical theory has yielded the Lamb shift, which 
appears as an ac Stark shift induced by the ZPF. Al- 
though these results are intriguing in their own right, the 
primary motivation for developing SRED is for its use as 
a tool in computer simulations of spontaneous decay un- 
der various conditions. It was therefore demonstrated 
that SRED has the potential to simulate spontaneous de- 
cay in arbitrary vacuum fields once the modal composi- 
tion of the vacuum field is specified. 
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